注:本平臺(tái)為第三方資訊平臺(tái),不是院校官方,網(wǎng)站內(nèi)所有信息只做參考,并不代表院校官方,招生信息以官方最新信息為準(zhǔn),如果不知怎么找官方,可以咨詢(xún)?cè)诰€客服尋求幫助。
國(guó)家重點(diǎn)實(shí)驗(yàn)室-資環(huán)院學(xué)術(shù)報(bào)告
報(bào)告題目:Nitrogen-responsive small peptide signaling pathways modulating root system architecture in plants
報(bào)告人:Hideki Takahashi 教授(Michigan State University)
報(bào)告時(shí)間:2018年11月30日15:00
報(bào)告地點(diǎn):資環(huán)學(xué)院學(xué)術(shù)報(bào)告廳B211
歡迎廣大師生參加!
報(bào)告人簡(jiǎn)介:
Hideki Takahashi,Department of Biochemistry and Molecular Biology, Michigan State University.Biochemistry, molecular biology, genetics, genomics, and genetic engineering of plants;
Molecular mechanisms of sulfur and nitrogen assimilation and signaling: Dr. Hideki Takahashi has been leading his research group in academia for 18 years, first appointed as a research team leader at RIKEN in 2000 and then faculty at Michigan State University since 2010. Over the past 20 years of career, his research has been focused on metabolic and morphological strategies that plants have developed to optimize nitrogen (N) and sulfur (S) assimilation and root growth in the environment. Uptake and metabolism of N and S are coordinately regulated when plants acclimate to the environment. Nutrient uptake can also be affected by morphological signals that modulate the root system architecture in response to changes in nutrient availabilities. Dr. Takahashi’s laboratory investigates plant root functions, metabolism and nutrient signaling pathways based on these organizing concepts and by taking advantage of plant genome information and functional genomics approaches. His research program provides a unique perspective at the interface of plant metabolic and developmental biology, elucidating genetic traits associated with macronutrient sensing and signaling mechanisms in plants.
代表性文章:
1. Maruyama-Nakashita, A., Suyama, A., Takahashi, H. (2017). 5′-non-transcribed flanking region and 5′-untranslated region play distinctive roles in sulfur deficiency induced expression of SULFATE TRANSPORTER 1;2 in Arabidopsis roots. Plant Biotechnol. 34, 51–55. doi: 10.5511/plantbiotechnology.16.1226a
2. Konishi, N., Ishiyama, K., Beier, M.P., Inoue, E., Kanno, K., Yamaya, T., Takahashi, H., Kojima, S. (2017). Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J. Exp. Bot. 68: 613–625. doi: 10.1093/jxb/erw454
3. Aarabi, F., Kusajima, M., Tohge, T., Konishi, T., Gigolashvili, T., Takamune, M., Sasazaki, Y., Watanabe, M., Nakashita, H., Fernie, A.R., Saito, K., Takahashi, H., Hubberten, H.M., Hoefgen, R., Maruyama-Nakashita, A. (2016). Sulfur deficiency-induced repressor proteins optimize glucosinolate biosynthesis in plants. Sci. Adv. 2(10): e1601087. doi: 10.1126/sciadv.1601087
4. Yoshimoto, N., Kataoka, T., Maruyama-Nakashita, A., and Takahashi, H. (2016). Measurement of uptake and root-to-shoot distribution of sulfate in Arabidopsis seedlings. Bio-Protocol 6(1): e1700. http://www.bio-protocol.org/e1700
5. Araya, T., Kubo, T., von Wirén, N., and Takahashi, H. (2016). Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana. J. Integr. Plant. Biol. 58: 254–265. doi: 10.1111/jipb.12433 (Root Architecture Special Issue, Ed. Leon Kochian)
6. Maruyama-Nakashita, A., Watanabe-Takahashi, A., Inoue, E., Yamaya, T., Saito, K., and Takahashi, H. (2015). Sulfur-responsive elements in the 3’-nontranscribed intergenic region are essential for the induction of SULFATE TRANSPORTER 2;1 gene expression in Arabidopsis roots under sulfur deficiency. Plant Cell 27: 1279–1296.
7. Bohrer, A.-S., Yoshimoto, N., Sekiguchi, A., Rykulski, N., Saito, K., and Takahashi, H. (2015). Alternative translational initiation of ATP sulfurylase underlying dual localization of sulfate assimilation pathways in plastids and cytosol in Arabidopsis thaliana. Front. Plant Sci. 5: 750. doi: 10.3389/fpls.2014.00750
8. Araya, T., Miyamoto, M., Wibowo, J., Suzuki, A., Kojima, S., Tsuchiya, Y.N., Sawa, S., Fukuda, H., von Wirén, N., and Takahashi, H. (2014). CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner. Proc. Natl. Acad. Sci. USA 111: 2029–2034.
免責(zé)聲明:本站所提供的內(nèi)容均來(lái)源于網(wǎng)友提供或網(wǎng)絡(luò)搜集,由本站編輯整理,僅供個(gè)人研究、交流學(xué)習(xí)使用,不涉及商業(yè)盈利目的。如涉及版權(quán)問(wèn)題,請(qǐng)聯(lián)系本站管理員予以更改或刪除。
想咨詢(xún)的同學(xué)請(qǐng)掃描二維碼添加好友